Статистика
Онлайн всього: 1 Гостей: 1 Користувачів: 0
|
Каталог статей
Изделия из ПЭ, полипропилена
Полиэтилен - термопластичный синтетический полимер белого цвета. Полиэтилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации этилена. Твердое вещество белого цвета. Выпускается в форме полиэтилена низкого давления (полиэтилена высокой плотности), получаемого суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе, и полиэтилена высокого давления (полиэтилен низкой плотности), получаемого при высоком давлении полимеризацией этилена в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа. Кроме того, существует несколько подклассов полиэтилена, отличающиеся от традиционных более высокими эксплуатационными характеристиками. В частности, сверхвысокомолекулярный полиэтилен, линейный полиэтилен низкой плотности, полиэтилен, получаемый на металлоценовых катализаторах, бимодальный полиэтилен. Как правило, полиэтилен выпускают в виде стабилизированных гранул диаметром 2-5 миллиметров в окрашенном и неокрашенном виде. Но возможен и промышленный выпуск полиэтилена в виде порошка. Обычное обозначение полиэтилена на российском рынке – ПЭ, но могут встречаться и другие обозначения: PE (полиэтилен), ПЭНП или ПЭВД или LDPE или PEBD или PELD (полиэтилен низкой плотности, полиэтилен высокого давления), ПЭВП или ПЭНД или HDPE или PEHD (полиэтилен высокой плотности, полиэтилен низкого давления), ПЭСП или MDPE или PEMD (полиэтилен средней плотности), ULDPE (полиэтилен сверхнизкой плотности), VLDPE (полиэтилен очень низкой плотности), ЛПЭНП или LLDPE или PELLD (линейный полиэтилен низкой плотности), LMDPE (линейный полиэтилен средней плотности), HMWPE или PEHMW или VHMWPE (высокомолекулярный полиэтилен). HMWHDPE (высокомолекулярный полиэтилен высокой плотности), PEUHMW или UHMWPE (сверхвысокомолекулярный полиэтилен), UHMWHDPE (ультравысокомолекулярный полиэтилен высокой плотности), PEX или XLPE (сшитый полиэтилен), PEC или CPE (хлорированный полиэтилен), EPE (вспенивающийся полиэтилен), mLLDPE или MPE (металлоценовый линейный полиэтилен низкой плотности). Условное обозначение отечественного суспензионного полиэтилена низкого давления (ПНД), состоит из названия материала «полиэтилен», восьми цифр, характеризующих конкретную марку, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен. Первая цифра 2 указывает на то, что процесс полимеризации этилена протекает на комплексных металлоорганических катализаторах при низком давлении. Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает на степень гомогенизации полиэтилена. Полиэтилен низкого давления подвергается усреднению холодным смешением, которое обозначается цифрой 0. Пятая цифра условно определяет группу плотности полиэтилена: 6 – 0,931-0,939 г/см3; 7 – 0,940-0,947 г/см3; 8 – 0,948-0,959 г/см3; 9 – 0,960-0,970 г/см3. При определении группы плотности берут среднее значение плотности данной марки. Следующие цифры, написанные через тире, указывают десятикратное среднее значение показателя текучести расплава данной марки. Пример обозначения базовой марки суспензионного полиэтилена низкого давления порядкового номера марки 10, усредненного холодным смешением, плотностью 0,948-0,959 г/см3 и средним показателем текучести расплава 7,5 г/10 мин: Полиэтилен 21008-075 ГОСТ 16338-85. Обозначение композиции полиэтилена низкого давления, не содержащей добавки красителя, состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки, номера рецептуры добавки, написанного через тире, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен. Пример обозначения композиции суспензионного полиэтилена низкого давления базовой марки 21008-075 с добавками в соответствии с рецептурой 04: Полиэтилен 210-04 ГОСТ 16338-85. Пример обозначения композиции газофазного полиэтилена низкого давления марки 271 с добавками в соответствии с рецептурой 70: Полиэтилен 271-70 ГОСТ 16338-85. Обозначение композиции полиэтилена низкого давления с добавкой красителя состоит из наименования материала «полиэтилен», трех первых цифр базовой марки, написанного через тире номера рецептуры добавки (при ее наличии), написанного через запятую наименования цвета, трехзначного числа, обозначающего рецептуру окраски, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен. Пример обозначения базовой марки полиэтилена низкого давления 21008-075 и композиции 210-04 на ее основе, окрашенных в красный цвет по рецептуре 101: Полиэтилен 210, красный рец. 101 ГОСТ 16338-85, Полиэтилен 210-04, красный рец. 101 ГОСТ 16338-85. Базовые марки суспензионного полиэтилена низкого давления: 20108-001; 20208-002; 20308-005; 20408-007; 20508-007; 20608-012; 20708-016; 20808-024; 20908-040; 21008-075. Базовые марки газофазного полиэтилена низкого давления: 271-70; 271-82; 271-83; 273-71; 273-73; 273-79; 273-80; 273-81; 276-73; 276-75; 276-83; 276-84; 276-85; 276-95; 277-73; 277-75; 277-83; 277-84; 277-85; 277-95. Условное обозначение отечественного полиэтилена высокого давления состоит из названия «полиэтилен», восьми цифр, сорта и обозначения стандарта, в соответствии с которым полиэтилен изготовлен. Первая цифра – 1 указывает на то, что процесс полимеризации этилена протекает при высоком давлении в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа. Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает на степень гомогенизации полиэтилена: 0 - без гомогенизации в расплаве; 1 - гомогенизированный в расплаве. Пятая цифра условно определяет группу плотности полиэтилена, г/см3. 1 – 0,900-0,909 2 – 0,910-0,916 3 – 0,917-0,921 4 – 0,922-0,926 5 – 0,927-0,930 6 – 0,931-0,939 При определении группы плотности берут её номинальное значение для данной марки. Следующие цифры, написанные через тире, указывают десятикратное значение показателя текучести расплава. Пример обозначения полиэтилена высокого давления порядкового номера марки 15, без гомогенизации в расплаве, плотностью 0,917-0,921 г/см3 и номинальным значением показателя текучести расплава 7 г/10 мин 1-го сорта: Полиэтилен 11503-070, сорт 1, ГОСТ 16337-77 Обозначение композиций полиэтилена высокого давления состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки, номера рецептуры добавки, написанного через тире, цвета и рецептуры окрашивания, сорта и обозначения стандарта, в соответствии с которым изготовлен полиэтилен. Пример обозначения композиции полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 03, 1-го сорта: Полиэтилен 102-03, сорт 1, ГОСТ 16337-77 В случае окрашенных композиций полиэтилена высокого давления к обозначению добавляется цвет и трехзначное число, обозначающее рецептуру окраски. Пример обозначения композиции полиэтилена высокого давления базовой марки 10204-003, окрашенной в розовый цвет по рецептуре 104, 1-го сорта: Полиэтилен 102, розовый 104, сорт 1, ГОСТ 16337-77 В обозначении полиэтилена высокого давления, предназначенного для изготовления пленок различного назначения, изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, а также полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение. Базовые марки полиэтилена высокого давления, полученного в реакторах с перемешивающим устройством: 10204-003; 10604-007; 10703-020; 10803-020; 11304-040; 11503-070; 12003-200; 12103-200. Базовые марки полиэтилена высокого давления, полученного в реакторах трубчатого типа: 15003-002; 15303-003; 15503-004; 16305-005; 17603-006; 17504-006; 16005-008; 17703-010; 16603-011; 17803-015; 15803-020; 16204-020; 16405-020; 18003-030; 18103-035; 16904-040; 18203-055; 16803-070; 18303-120; 17403-200; 18404-200. В кабельной промышленности используются композиции на основе полиэтилена высокого давления (низкой плотности) и низкого давления (высокой плотности) со стабилизаторами и другими добавками, предназначенные для наложения изоляции, оболочек и защитных покровов проводов и кабелей методом экструзии. Марки композиций полиэтилена для кабельной промышленности устанавливаются на основе базовых марок полиэтилена высокого давления 10204-003, 15303-003, 10703-020, 18003-030, 17803-015 и рецептур добавок 01, 02, 04, 09, 10, 93-97, 99, 100, марки 10703-020 и рецептур 61 и полиэтилена низкого давления (суспензионный метод) 20408-007, 20608-012, 20708-016, 20808-024 и рецептур добавок 07, 11, 12, 19, 57 полиэтилена низкого давления (газофазный метод) на основе марки 271-порошок и рецептур добавок 70, 82, 83, марки 273-порошок и рецептур добавок 71, 81. Обозначение марок композиций полиэтилена для кабельной промышленности состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки полиэтилена, номера рецептуры добавок, написанного через тире, и буквы «К», обозначающей применение композиций полиэтилена в кабельной промышленности, и обозначения стандарта, в соответствии с которым изготовлен полиэтилен для кабельной промышленности. Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 09: Полиэтилен 102-09К ГОСТ 16336-77 Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена низкого давления базовой марки 20408-007 с добавками в соответствии с рецептурой 07: Полиэтилен 204-07К ГОСТ 16336-77 При заказе полиэтилена после обозначения марки указывают сорт. Для полиэтилена, предназначенного для изготовления электротехнических изделий и изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, контактирующих и не контактирующих с полостью рта, а также для полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение. Но на рынке присутствуют и другие марки полиэтилена, поскольку большинство производителей работает в соответствии с собственными ТУ, отражающими развитие индустрии полимерных материалов, за которым система стандартизации не всегда успевает. Строение Полиэтилен является продуктом полимеризации этилена, химическая формула которого С2Н4. В процессе полимеризации происходит разрыв двойной связи этилена и образуется полимерная цепь, элементарное звено которой состоит из двух атомов углерода и четырех атомов водорода: Н Н | | – С – С – | | Н Н В процессе полимеризации может происходить разветвление полимерной цепи, когда к растущей главной цепи сбоку присоединяется короткая полимерная группа. Разветвленность полимерной цепи препятствует плотной упаковке макромолекул и приводит к образованию рыхлой аморфно-кристаллической структуры материала и, как следствие, к уменьшению плотности полимера и понижению температуры размягчения. Различная степень разветвленности полимерной цепи полиэтиленов высокого и низкого давления и определяет различие свойств этих материалов. Так у полиэтилена высокого давления разветвленность цепи 15-25 ответвлений на 1000 атомов углерода цепи, а у полиэтилена низкого давления – 3-6 на 1000 атомов углерода цепи. Соответственно, плотность, температуры плавления и размягчения, степень кристалличности у ПЭВД, который еще называют «полиэтиленом с разветвленной цепью», меньше, чем у ПЭНД, способ полимеризации которого обусловливает малую разветвленность. Свойства Полиэтилен – пластический материал с хорошими диэлектрическими свойствами. Ударостойкий, не ломающийся, с небольшой поглотительной способностью. Физиологически нейтральный, без запаха. Обладает низкой паро и газопроницаемостью. Полиэтилен не реагирует со щелочами любой концентрации, с растворами любых солей, карбоновыми, концентрированной соляной и плавиковой кислотами. Устойчив к алкоголю, бензину, воде, овощным сокам, маслу. Разрушается 50%-ной азотной кислотой, а также жидкими и газообразными хлором и фтором. Не растворим в органических растворителях и ограниченно набухает в них. Полиэтилен стоек при нагревании в вакууме и атмосфере инертного газа. Но на воздухе деструктируется при нагревании уже при 80 °С. Устойчив к низким температурам до –70 °С. Под действием солнечной радиации, особенно ультрафиолетовых лучей, подвергается фотодеструкции (в качестве светостабилизаторов используется сажа, производные бензофенонов). Практически безвреден, из него не выделяются в окружающую среду опасные для здоровья человека вещества. Полиэтилен легко перерабатывается всеми основными способами переработки пластмасс. Легко подвергается модификации. Посредством хлорирования, сульфирования, бромирования, фторирования ему можно придать каучукоподобные свойства, улучшить теплостойкость, химическую стойкость. Сополимеризацией с другими олефинами, полярными мономерами повысить стойкость к растрескиванию, эластичность, прозрачность, адгезионные характеристики. Смешением с другими полимерами или сополимерами улучшить ударную вязкость и другие физические свойства. Химические, физические и эксплуатационные свойства полиэтилена зависят от плотности и молекулярной массы полимера, а потому различны для различных видов полиэтилена. Так, например, ПЭВД(полиэтилен с разветвленной цепью) мягче, чем ПЭНД, следовательно пленки из полиэтилена низкого давления более жесткие и плотные, чем из полиэтилена высокого давления. Их прочность при растяжении и сжатии выше, сопротивление раздиру и удару ниже, а проницаемость в 5-6 раз ниже, чем у пленок из ПЭВД. Сверхвысокомолекулярный полиэтилен с молекулярной массой более 1 000 000 имеет повышенные прочностные качества. Температурный интервал его эксплуатации от -260 до +120 °С. Он обладает низким коэффициентом трения, высокой износостойкостью, стойкостью к растрескиванию, химической стойкостью в наиболее агрессивных средах. Свойства ПЭНД в соответствии с ГОСТ 16338-85.
1. Плотность – 0,931-0,970 г/см3. 2. Температура плавления – 125-132 °С. 3. Температура размягчения по Вика в воздушной среде – 120-125 °С. 4. Насыпная плотность гранул – 0,5-0,6 г/см3. 5. Насыпная плотность порошка – 0,20-0,25 г/см3. 6. Разрушающее напряжение при изгибе –19,0-35,0 МПа 7. Предел прочности при срезе – 19,0-35,0 МПа. 8. Твердость по вдавливанию шарика под заданной нагрузкой – 48,0-54,0 МПа. 9. Удельное поверхностное электрическое сопротивление – 1014 Ом. 10. Удельное объемное электрическое сопротивление – 1016-1017 Ом•см. 11. Водопоглощение за 30 суток – 0,03-0,04 %. 12. Тангенс угла диэлектрических потерь при частоте 1010 Гц – 0,0002-0,0005. 13. Диэлектрическая проницаемость при частоте 1010 Гц – 2,32-2,36. 14. Удельная теплоемкость при 20-25 °С – 1680-1880 Дж/кг•°С. 15. Теплопроводность – (41,8-44)•10-2 В/(м•°С). 16. Линейный коэффициент термического расширения – (1,7-2,0)•10-41/°С.
Свойства ПЭВД в соответствии с ГОСТ 16337-77.
1. Плотность – 0,900-0,939 г/см3. 2. Температура плавления – 103-110 °С. 3. Насыпная плотность – 0,5-0,6 г/см3. 4. Твердость по вдавливанию шарика под заданной нагрузкой – (1,66-2,25)•105 Па; 1,7-2,3 кгс/см2. 5. Усадка при литье – 1,0-3,5 %. 6. Водопоглощение за 30 суток – 0,020 %. 7. Разрушающее напряжение при изгибе – (117,6-196,07)•105 Па; 120-200 кгс/см2. 8. Предел прочности – (137,2-166,6)•105 Па; 140-170 кгс/см2. 9. Удельное объемное электрическое сопротивление – 1016-1017 Ом•см. 10. Удельное поверхностное электрическое сопротивление – 1015 Ом. 11. Температура хрупкости для полиэтилена с показателем текучести расплава в г/10 мин 0,2-0,3 – не выше минус 120 °С, 0,6-1,0 – не выше минус 110 °С, 1,5-2,2 – не выше минус 100 °С, 3,5 – не выше минус 80 °С, 5,5 – не выше минус 70 °С, 7-8 – не выше минус 60 °С, 12 – не выше минус 55 °С, 20 – не выше минус 45 °С. 12. Модуль упругости (секущий) для полиэтилена плотностью в г/см2 0,917-0,921 – (882,3-1274,5)•105 Па; 900-1300 кгс/см2, 0,922-0,926 – (1372-1764,7)•105 Па; 1400-1800 кгс/см2, 0,928 – 2107,8 •105 Па; 2150 кгс/см2. 13. Тангенс угла диэлектрических потерь при частоте 10100 Гц – 0,0002-0,0005. 14. Диэлектрическая проницаемость при частоте 1010 Гц – 2,25-2,31.
Сравнительный анализ характеристик ПЭНД и ПЭВД показывает, что ПЭНД, вследствие более высокой плотности, имеет более высокие прочностные показатели: теплостойкость, жесткость и твердость, обладает большей стойкостью к растворителям, чем ПЭВД, но менее морозоустойчив. Несколько хуже, чем у ПЭВД (из-за остатков катализаторов), высокочастотные электрические характеристики, однако это не ограничивает применения ПЭНД в качестве электроизоляционного материала. Кроме того, наличие остатков катализаторов не позволяет использовать ПЭНД в контакте с пищевыми продуктами (требуется отмывка от катализаторов). Благодаря более плотной упаковке макромолекул проницаемость ПЭНД ниже, чем у ПЭВД примерно в 5-6 раз. По химической стойкости ПЭНД также превосходит ПЭВД (особенно по стойкости к маслам и жирам). Но пленки из ПЭВД более проницаемы для газов, а потому непригодны для упаковки продуктов, чувствительных к окислению. Получение В промышленности полиэтилен получают полимеризацией этилена при высоком (ПЭВД, ПЭНП) и низком давлениях (ПЭНД, ПЭВП). Полиэтилен высокого давления (низкой плотности) получается полимеризацией этилена при высоком давлении в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа. Полиэтилен высокого давления выпускают без добавок – базовые марки, или в виде композиций на их основе со стабилизаторами и другим и добавками в окрашенном и неокрашенном виде. Полиэтилен низкого давления (высокой плотности), получают суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе или полимеризацией этилена в растворе в присутствии титан-магниевого катализатора или CrO3 на силикагеле. Полиэтилен, получаемый суспензионным методом (суспензионный полиэтилен), выпускают без добавок (базовые марки) и в виде композиций на их основе со стабилизаторами, красителями и другими добавками. Полиэтилен, получаемый газофазным методом (газофазный полиэтилен), выпускают в виде композиций со стабилизаторами. Процесс полимеризации при высоком давлении протекает по радикальному механизму, инициаторами являются кислород, пероксиды, например, лаурила или бензоила, или их смесей. При производстве ПЭВД в трубчатом реакторе этилен, смешанный с инициатором, сжатый компрессором до 25 МПа и нагретый до 70 °С, поступает сначала в первую зону реактора, где подогревается до 180°С, а затем во вторую, где полимеризуется при 190-300 °С и давлении 130-250 МПа. Среднее время пребывания этилена в реакторе 70-100 с, степень превращения 18-20% в зависимости от количествава и типа инициатора. Из полиэтилена удаляют непрореагировавший этилен, расплав охлаждают до 180-190 °С и гранулируют. Гранулы, охлажденные водой до 60-70 °С, подсушивают теплым воздухом и упаковывают в мешки. Принципиальная схема производства ПЭВД в автоклаве с перемешивающим устройством отличается от производства в трубчатом реакторе тем, что инициатор в парафиновом масле подается специальным насосом высокого давления непосредственно в реактор. Процесс проводят при 250 °С и давлении 150 МПа. Среднее время пребывания этилена в реакторе – 30 с. Степень превращения – около 20%. Товарный полиэтилен высокого давления выпускают окрашенным и неокрашенным, в гранулах диаметром 2-5 мм. Процесс полимеризации при низком давлении протекает по координационно-ионному механизму. Получения ПЭНД в суспензии включает следующие стадии: приготовление суспензии катализатора и раствора активатора в виде комбинации триэтилалюминия и производных титана; полимеризацию этилена при температуре 70-95 °С и давлении 1,5-3,3 МПа; удаление растворителя, сушку и гранулирование полиэтилена. Степень превращения этилена – 98%. Концентрация полиэтилена в суспензии – 45%. Единичная мощность реакторов с усовершенствованной системой теплосъема – до 60-75 тыс. т/год. Технологическая схема получения ПЭНД в растворе осуществляется, как правило, в гексане при 160-250 °С и давлении 3,4-5,3 МПа в присутствии титан-магниевого катализатора или CrO3 на силикагеле. Время контакта с катализатором 10-15 мин. Полиэтилен из раствора выделяют удалением растворителя последовательно в испарителе, сепараторе и вакуумной камере гранулятора. Гранулы полиэтилена пропаривают водяным паром при температуре, превышающей температуру плавления полиэтилена, чтобы в воду перешли низкомолекулярные фракции полиэтилена и нейтрализовались остатки катализатора. Преимущества полимеризации в растворе перед полимеризацией в суспензии в том, что исключаются стадии отжима и сушки полимера, появляется возможность утилизации теплоты полимеризации для испарения растворителя, облегчается регулирование молекулярной массы полиэтилена. Газофазную полимеризацию этилена проводят при 90-100 °С и давлении 2 МПа с хромсодержащими соединениями на силикагеле в качестве катализатора. В нижней части реактор имеет перфорированную решетку для равномерного распределения подаваемого этилена с целью создания кипящего слоя, в верхней – расширенную зону, предназначенную для снижения скорости газа и улавливания частиц образовавшегося полиэтилена. Товарный полиэтилен низкого давления выпускают окрашенным и неокрашенным, обычно в гранулах диаметром 2-5 мм, реже – в виде порошка. Применение различных катализаторов позволяет поручать разновидности полиэтилена с улучшенными эксплуатационными качествами Так, полимеризацией в растворителе в присутствии оксидов Со, Мо, V при 130-170 °С и давлении 3,5-4 МПа получают полиэтилен среднего давления (ПЭСД), разветвленность цепи которого менее 3 ответвлений на 1000 атомов углерода, что повышает его прочностные качества и термостойкость по сравнению с ПЭНД. Металлоценовые катализаторы делают возможной управляемую полимеризацию по длине цепи, что позволяет получать полиэтилен с заданными потребительскими характеристиками. Если процесс полимеризации происходит при низком давлении в присутствии металлоорганических соединений, то получается полиэтилен с высокой молекулярной массой и строголинейной структурой, который в отличие от обычного ПЭНД обладает повышенными прочностными показателями, низким коэффициентом трения и высокой износостойкостью, стойкостью к растрескиванию, химической стойкостью в наиболее агрессивных средах. Химической модификацией ПЭВД получен линейный полиэтилен низкой плотности – ЛПЭНП, который представляет собой легкий эластичный кристаллизующийся материал с теплостойкостью по Вика до 118 °С. Более стоек к растрескиванию, имеет большую ударную прочность и теплостойкость, чем ПЭВД. При наполнении ПЭВД крахмалом может быть получен материал, представляющий интерес в качестве биоразрушаемого материала. Основные производители полиэтилена низкого давления для российского рынка:
Ставролен – в частности, Ставролен РЕ4FE69, Ставролен РЕ4EC04S, Ставролен РЕ3IM61, Ставролен РЕ0ВМ45, Ставролен РЕ3ОТ49, Ставролен РЕ4ВМ42, Ставролен, РЕ4ВМ50В, Ставролен РЕ4ВМ41, Ставролен РЕЕС05, Ставролен РЕ4РР25В; Казаньоргсинтез – в частности, ПНД 277-73, ПНД 276-73, ПНД 293-285Д, ПНД 273-83, ПНД ПЭ80Б-275, ПНД ПЭ80Б-285Д, ПНД 273-79; Шуртанский ГХК – в частности, B-Y456, B-Y460, I-0760, I-1561. Основные производители полиэтилена высокого давления для российского рынка: Казаньоргсинтез – в частности, ПВД 15813-020, ПВД 15313-003, ПВД 10803-020; Томскнефтехим – в частности, ПВД 15803-020, ПВД 15313-003; Уфаоргсинтез – в частности, ПВД 15803-020. Основные производители полиэтилена кабельных марок для российского рынка: Казаньоргсинтез – в частности, ПВД 153-02К, ПВД 153-10К, 271-274К; Шуртанский ГХК – в частности, WC-Y436. Полиэтилен трубных марок P-Y337 MDPE, P-Y342 HDPE, P-Y456 HDPE производит Шуртанский ГХК. Это же предприятие выпускает пленочный полиэтилен F-Y346, F-0220S, F-0120S, F0120, F0220.
Применениe Полиэтилен – наиболее широко использующийся полимер. Он лидирует в мировом выпуске полимерных материалов – 31,5% от общего объема производимых полимеров. Технология изготовления изделий из полиэтилена сравнительно проста. Он может быть подвержен переработке всеми известными методами. Сваривается всеми основными способами: горячим газом, присадочным прутком, трением, контактной сваркой. Для работы с полиэтиленом не требуется применения узкоспециализированного оборудования, как например, для переработки ПВХ, а современная промышленностью выпускает сотни марок добавок и красителей для придания изделиям из полиэтилена самых разнообразных потребительских качеств. Применяя литье под давлением, из полиэтилена изготавливают широкий спектр товаров бытового назначения, канцтоваров, игрушек. При использовании экструзии получают полиэтиленовые трубы (существует специальные марки – трубный PE63, PE80, PE100), полиэтиленовые кабели (весьма перспективен сшитый полиэтилен), листовой полиэтилен для упаковки и строительства, а также самые разнообразные полиэтиленовые пленки для нужд всех отраслей промышленности. Экструзионно-выдувным и ротационным формованием из полиэтилена создают разного рода емкости, сосуды, тару. Термовакуумным формованием – разнообразные упаковочные материалы. Различные специальные виды полиэтилена, такие как сшитый, вспененный, хлорсульфированный, сверхвысокомолекулярный успешно применяются для создания специальных стройматериалов. Отдельный сегмент современного рынка – рециклинг полиэтилена. Многие компании в России и мире специализируются на покупке полиэтиленовых отходов с дальнейшей переработкой и продажей или использованием вторичного полиэтилена. Как правило, для этого применяется технология экструдирования очищенных отходов и последующим дроблением и получением вторичного гранулированного материала пригодного для изготовления изделий. Наиболее широко полиэтилен применяют для производства пленок технического и бытового назначения. Преимущества всех типов полиэтилена для упаковочных целей: малая плотность, хорошая химическая стойкость, незначительное водопоглощение, хорошая прозрачность, легкая перерабатываемость, хорошая свариваемость, непроницаемость для водяного пара, высокая вязкость, гибкость, растяжимость и эластичность. Полиэтиленовые пленки используются для производства пакетов для хлеба, овощей, мяса, птицы, мешков для мусора, упаковочных пленок для закрепления грузов. ПЭВД используется для изготовления комбинированных пленок соэкструзией с другими термопластичными полимерами и для нанесения на бумагу, картон, целлофан, алюминиевую фольгу. Во всех этих комбинированных пленках слой ПЭВД придает пленке отличную свариваемость, а другие слои – прочность и непроницаемость для запахов. Для получения определенных свойств осуществляют преобразование полиэтилена винилацетатом. Эти пленки при хорошей прочности более прозрачны и лучше свариваются. Благодаря этому при нагреве и адгезии с другими материалами, они становятся пригодны также для нанесения на картон и другие упаковочные материалы. Отечественный сополимер этилена с винилацетатом, получаемый совместной полимеризацией этилена и винилацетата в массе под высоким давлением, известен под торговой маркой Сэвилен, который широко используется при производстве витых шлангов для воздухоотсосов от различного оборудования. Полиэтилен используется для производства:
- пленок: сельскохозяйственных, упаковочных, термоусадочных, стретч;
- пластиковых труб: газовых, водопроводных, напорных, ненапорных;
- пластиковых емкостей: цистерн, канистр, бутылей; стройматериалов;
- волокон;
- предметов домашнего обихода;
- санитарно-технических изделий;
- деталей автомашин и другой техники;
- изоляции электрокабелей;
- пенополиэтилена;
- протезов внутренних органов;
И это далеко не предел возможностей использования полиэтилена. Тем более, что на рынок постоянно выходят новые марки этого полимера с новыми потребительскими свойствами. Например, сверхвысокомолекулярный полиэтилен (СВМПЭ), применяемый для изготовления высокопрочных технических изделий, стойких к удару, растрескиванию и истиранию: шестерен, втулок, муфт, роликов, валиков, звездочек, а также изолирующих деталей аппаратуры, работающей в диапазоне высоких и сверхвысоких частот. Кроме того, СВМПЭ находит широкое применение в изготовлении пористых изделий: фильтров, глушителей шума, прокладок, а в эндопротезировании – при создании суставов, черепных и челюстно-лицевых протезов.
Полипропилен Материал, родственный полиэтилену, также образующийся в результате полимеризации этилена, а именно по технологии низкого давления. Полипропилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации пропилена. Твердое вещество белого цвета. Выпускается в форме гомополимера и сополимеров, получаемых сополимеризацией пропилена и этилена в присутствии металлоорганических катализаторов при низком и среднем давлениях, в виде гранул стабилизированных, окрашенных или неокрашенных. Обычное обозначение полипропилена на российском рынке – ПП, но могут встречаться и другие обозначения: РР (полипропилен), PP HO или PP homopolymer (полипропилен гомополимер), HIPP (высокоизотактический полипропилен гомополимер), РР-Х, PP-XMOD (сшитый полипропилен), PPCP или PP/Co или PP block-copolymer или PP impact copolymer (полипропилен блок-сополимер, блок-сополимер пропилена и этилена), PPМ (блок-сополимер пропилена и этилена с низким содержанием полиэтилена), PPR (блок-сополимер пропилена и этилена со средним содержанием полиэтилена), PPU (блок-сополимер пропилена и этилена с высоким содержанием полиэтилена), PPH (блок-сополимер пропилена и этилена с очень высоким содержанием полиэтилена), PP random copolymer (статистический сополимер пропилена и этилена), PP-EPDM или PP/EP (смесь полипропилена и тройного сополимера этилена, пропилена и диена), EPP (вспенивающийся полипропилен), EMPP (полипропилен, модифицированный каучуком), mРР (металлоценовый полипропилен). Условное обозначение отечественного полипропилена и сополимеров пропилена, выпускаемых в соответствии с ГОСТ 26996-86, состоит из названия материала «полипропилен» или «сополимер» и пяти цифр. Первая цифра 2 или 0 указывает на то, что процесс полимеризации протекает на комплексных металлорганических катализаторах при низком или среднем давлении соответственно. Вторая цифра указывает вид материала: 1 – полипропилен; 2 – сополимер пропилена. Три последующие цифры обозначают десятикратное значение показателя текучести расплава. Далее через тире указывают номер рецептуры стабилизации, затем сорт и обозначение стандарта, в соответствии с которым изготавливается полипропилен и его сополимеры. Пример условного обозначения полипропилена марки 21020, стабилизированного по рецептуре 02, 1-го сорта: Полипропилен 21020-02, сорт 1, ГОСТ 26996-86. При выпуске окрашенного полипропилена или сополимера в обозначении дополнительным словом указывают цвет и трехзначное число, обозначающее номер рецептуры окрашивания. Пример условного обозначения полипропилена марки 21030, стабилизированного по рецептуре 06, окрашенного в красный цвет по рецептуре 105, 1-го сорта: Полипропилен 21030-06, красный, рец. 105, сорт 1, ГОСТ 26996-86. Исходя из условного обозначения полипропилена, разделив число из трех последних цифр в марке полипропилена на 10, можно найти ПТР и определить наиболее подходящий способ переработки конкретной марки ПП. ПТР < 1 - экструзия; ПТР от 2,5 до 4 - экструзия с раздувом, ПТР 3 и более - литье под давлением. Марки полипропилена и сополимеров пропилена устанавливаются в зависимости от способа их получения, свойств и назначения. В соответствии с ГОСТ 26996-86 полипропилен низкого давления включает в себя одиннадцать марок: 21003, 21007, 21012, 21015, 21020, 21030, 21060, 21100, 21130, 21180, 21230; полипропилен среднего давления включает в себя четыре марки: 01003, 01005, 01010, 01020; сополимеры полипропилена низкого давления включает в себя три марки: 22007, 22015, 22030. Но на рынке присутствуют и другие марки полипропилена, поскольку большинство производителей работает согласно собственным ТУ. По характеру пространственного расположения метильной группы относительно молекулярной цепи различают: атактические полипропилены – характеризуются тем, что в них метильные группы расположены по обе стороны цепи совершенно неупорядоченно, такие полимеры имеют консистенцию от масло- до воскообразной; изотактические полипропилены – в их макромолекулах все метильные группы расположены с одной стороны цепи, полимеры такого типа на 50% жестче и на 25% тверже, чем атактические полипропилены; синдиотактические полипропилены – в их полимерных цепях метильные группы расположены строго альтернативно – поочередно слева и справа от центральной цепи, синдиотактический полипропилен прозрачен и более вязок, чем изотактический; стереоблочные полипропилены – их макромолекулы построены из чередующихся блоков изотактического и атактического строения. Наибольшее промышленное значение имеют изотактические полипропилены. Свойства Полипропилен – пластический материал, отличающийся высокой прочностью при ударе и многократном изгибе, износостойкостью, хорошими электроизоляционными свойствами в широком диапазоне температур, высокой химической стойкостью, низкой паро- и газопроницаемостью. В тонких пленках практически прозрачен. Стоек к кислотам, щелочам, растворам солей, минеральным и растительным маслам при высоких температурах. При комнатной температуре нерастворим в органических растворителях. Растворяется только при повышенных температурах в сильных растворителях: хлорированных, ароматических углеводородах. Полипропилен легко перерабатывается. Хорошо смешивается с красителями. Легко подвергается хлорированию. Легко кристаллизуется (макс. степень кристалличности 75%). Все изделия из полипропилена выдерживают кипячение, и могут стерилизоваться паром без какого-либо изменения их формы или механических свойств. Максимальная температура эксплуатации полипропилена 120-140°C. Полипропилен чувствителен к свету и кислороду (чувствительность понижается при введении стабилизаторов), имеет невысокую морозостойкость, которую можно повысить введением в макромолекулу изотактического полипропилена звеньев этилена (например, при сополимеризации пропилена с этиленом). Свойства полипропилена в соответствии с ГОСТ 26996-86.
1. Плотность – 900-910 кг/м3. 2. Насыпная плотность гранул – 440-520 кг/м3. 3. Водопоглощение – 0,01-0,03 % за 24 ч. 4. Линейная усадка в форме – 1,0-2,5 %. 5. Температура плавления – 160-168 °С. 6. Теплостойкость при нагрузке 46 Н/см2 – 140-145 °С. 7. Температура хрупкости – (+5)-(-15) °С. 8. Коэффициент линейного расширения (от 30 до 100 °С) – (1,1-1,8)•10-4 1/°. 9. Удельная теплоемкость при 20 °С – 1,93 кДж/кг•°С. 10. Коэффициент теплопроводности – 0,16-0,22 Вт/м•°С. 11. Предел текучести при растяжении полипропилена низкого давления – 30-38. 12. Разрушающее напряжение при растяжении – 24,5-39. 13. Относительное удлинение при разрыве для марок 21003, 21007, 21012, 21015, 21020, 21030 – 200-1000 %. 14. Модуль упругости при изгибе – 1220-1670. 15. Твердость по Роквеллу – 50-70 α 16. Удельное объемное электрическое сопротивление – 1016-1018 Ом•см 17. Максимальная температура при длительной эксплуатации изделий (без нагрузки) – 100-110 °С. 18. Ударная вязкость по Изоду с надрезом при 0 °С – 3-5 кДж/м2, при минус 20 °С – 2-3 кДж/м2. 19. Тангенс угла диэлектрических потерь при частоте 50 Гц для марок 01003, 01005, 01010, 01020 – не более 5•10-4. 20. Диэлектрическая проницаемость при частоте 50 Гц для марок 01003, 01005, 01010, 01020 – не более 2,4. 21. Электрическая прочность (при толщине образца 2 мм) при переменном напряжении для марок 01003, 01005, 01010, 01020 – не менее 25 кВ/мм 22. Кислородный индекс – 25,5-27,5 %. 23. Огнестойкость при толщине образца 0,8 мм – категория ПВ-2, при толщине образца 1,6 мм – категория ПВ-0.
Применениe Благодаря своим потребительским и технологическим качествам полипропилен имеет очень широкий спектр применения и занимает втрое место после полиэтилена по мировому выпуску – 20,5%. Полипропилен применяется для производства газо- и водопроводных (напорных) полипропиленовых труб, профилей, листов, пленки, мебели, технических изделий, товаров культурно-бытового назначения, в производстве полипропиленового волокна. Отдельные марки полипропилена допущены к контакту с пищевыми продуктами и для производства изделий медико-биологического назначения. Свойство полипропилена пропускать водяные пары, делает его незаменимым для «противозапотевающей» упаковки продуктов питания (хлеба, зелени, бакалеи), а также в строительстве для гидроизоляции. Для упаковки применяют неориентированные и ориентированные (в одном или в двух направлениях) полипропиленовые пленки. Ориентированная пленка отличается высокой механической прочностью, особенно стойкостью к проколам, однако с трудом подвергается термической сварке, вызывая усадку материала в месте сварного шва. Ориентированную пленку из полипропилена используют в качестве защитного наружного слоя в многослойных материалах, а неориентированную – в качестве внутреннего термосвариваемого слоя. Неориентированные раздувные полипропиленовые пленки наиболее широко применяют для упаковки текстильных товаров (трикотаж, рубашки, белье и т.д.). Их использование здесь обусловлено хорошей прозрачностью в сочетании с прекрасной свариваемостью на любых упаковочных машинах. Неориентированные пленки применяют для упаковки медицинских изделий (особенно многоразового использования). Относительно высокая температура размягчения позволяет проводить автоклавную стерилизацию. Покрытые и соэкструдированные полипропиленовые пленки используют для упаковывания печенья, где нужны особенно хорошие барьерные свойства к кислороду и водяным парам. Их же применяют для упаковки хрустящего картофеля и других видов сухих завтраков, предельно чувствительных к кислороду и парам воды. В такие пленки упаковывают кондитерские изделия и сигареты. Ориентированный полипропилен используют также для усадочных оберток, там, где нужен красивый внешний вид. Полипропилен также часто используется для производства контейнеров и упаковки для пищевых продуктов, особенно, таких, которые не деформируются в посудомоечных машинах. Он употребляется в качестве волокна при изготовлении ковров и ковриков для применения в особо неблагоприятной среде, например, в плавательных бассейнах и т. п. Полипропилен используется при производстве:
- упаковки для пищевых продуктов, косметических средств и других товаров;
- пластиковых контейнеров (в том числе тонкостенных);
- одноразовой посуды;
- колпачков для флаконов;
- крышек для бутылок;
- ящиков;
- посуды, подносов, ведер, тазов;
- корпусных деталей бытовой и оргтехники: утюгов, тостеров, кофеварок, стиральных машин, пылесосов и др.;
- электроинструмента, приборов, вентиляторов;
- изделий медицинского назначения: одноразовых шприцев, головок иголок для инъекций, пипеток;
- игрушек;
- труб и фитингов;
- бамперов и деталей кузова автомобилей;
- панелей приборов;
- бачков радиаторов автомобилей;
- футляров с гибкими петлями;
- деталей, работающих на многократный изгиб.
Отдельный сегмент современного рынка – рециклинг полипропилена. Многие компании в России и мире специализируются на покупке полипропиленовых отходов с дальнейшей переработкой и продажей или использованием вторичного полипропилена. Как правило, для этого применяется технология экструдирования очищенных отходов и последующим дроблением и получением вторичного гранулированного материала пригодного для изготовления изделий. На рынке появляются новые разновидности полипропилена, например, близкие по свойствам к резине, что открывает новые области для его применения.
Джерело: http://sbm-stroy.ru/ |
Категорія: матеріали | Додав: xjon (13.04.2011)
|
Переглядів: 5355 | Коментарі: 2
| Рейтинг: 0.0/0 |
|
|